

Line scan lens

Makro-Symmar 5.6/120-0.75x

Wherever complex web and surface inspections are concerned, the line scan image capture method is used in most cases. Due to the principle used, this method requires a very careful choice of camera and an optimally adapted lens in order to achieve maximum system performance. It is essential to observe important application-specific and physical parameters: the size of the CCD or CMOS imaging sensor in the camera defines the minimum required image circle of the lens.

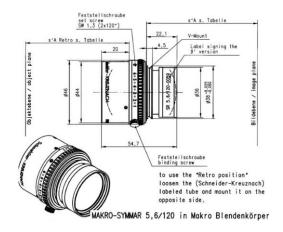
ıvıaкı 0-Symmar 5.6/120

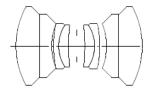
Key Features

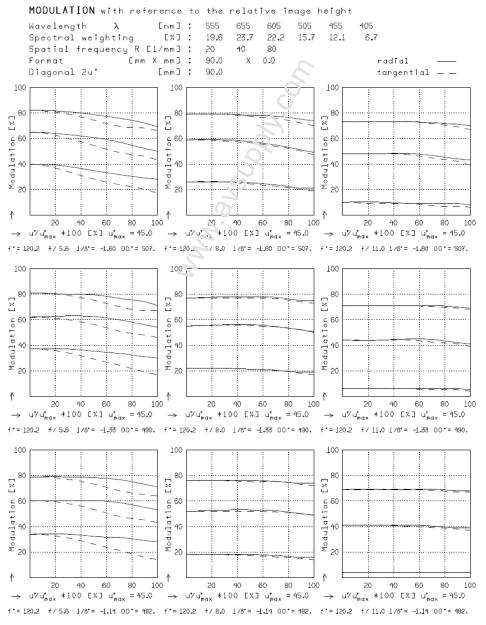
- · Very high optical image quality in the large sensor range
- Vibration-insensitive for stable optical performance
- Reverse position of the lens possible to enlarge the magnification range
- Lockable distance and aperture settings
- Use in best azimuth position possible
- Industry-compatible V-mount interface
- 100% quality control guarantees reliability and constant quality
- Low maintenance requirements, therefore high system availability

Applications

- · Web and surface inspections
- · Quality control
- FPD inspection
- PCB inspection
- OLED inspection
- Line scan applications


Technical Specifications

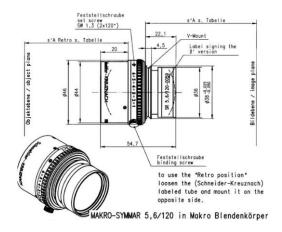

F-number	5.6
Focal length	120.2 mm
Image circle	86 mm
Magnification	-0.75
Transmission	400 - 1000 nm
Interface	V-Mount
Weight	170 gr.
Option	Optical filter

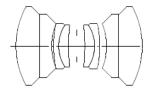

Makro-Symmar 5.6/120-0.75

M-SR 5.6/120 BETA -0.625..-0.875 $f^* = 120.2 \text{ mm}$ $6^{\circ}_{P} = 0.994$ $s_{F} = -94.8 \text{ mm}$ $s_{EP} = 26.1 \text{ mm}$ $s_{F}^{\bullet} = 94.1 \text{ mm}$ $s_{AP}^{\bullet} = -25.4 \text{ mm}$ $HH^{\circ} = -1.2 \text{ mm}$ $\Sigma d = 50.4 \text{ mm}$

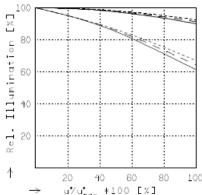
M-SR 5.6/120 BETA -0.625..-0.875

MTF_{max} at f / 5.6

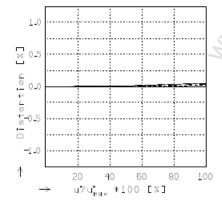

Focusing:

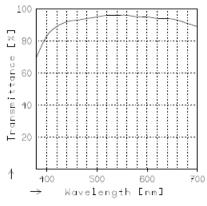

. R = 80 1/mm, u'/u'_{max} = 0

Makro-Symmar 5.6/120-0.75



M-SR 5.6/120 BETA -0.625..-0.875 = 120.2 mm ß = 0.994


s_{EP} = 26.1 mm


s#. = 94.1 mm $s_{AP}^* = -25.4 \text{ mm}$

HH * = -1.2 mm $\Sigma d = 50.4 \text{ mm}$

u/umax *100 [%]

RELATIVE ILLUMINATION

The relativillumination is shown for the given focal distances or magnifications.

$$u_{\text{max}}^* = 45.0$$
 00' = 507.
 $u_{\text{max}}^* = 45.0$ 00' = 490.
 $u_{\text{max}}^* = 45.0$ 00' = 482.

DISTORTION

Distortion is shown for the given focal distances or magnifications. Positive values indicate pincushion distortion and negative values barrel distortion.

TRANSMITTANCE

Relative spectral transmittance is shown with reference to wavelength.